Structural Basis for a Lethal Mutation in U6 RNA†,‡
نویسندگان
چکیده
منابع مشابه
investigating the integration of translation technologies into translation programs in iranian universities: basis for a syllabus design in translation technology
today, information technology and computers are indispensable tools of any profession and translation technologies have become an indispensable part of translator’s workstation. with the increasing demands for high productivity and speed as well as consistency and with the rise of new demands for translation and localization, it is necessary for translators to be familiar with market demands an...
Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs.
U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the U4/U6 helix by dominant (gain-of-function), compensatory mutations in U6 results in wild-type gr...
متن کاملStructural Basis for Regulation of RNA-Binding Proteins by Phosphorylation
Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay are often regulated by phosphorylation of RNA-binding proteins. Cells use phosphorylation-dependent signaling pathways to turn on and off gene expression. Not much is known about how phosphorylation-dependent signals transmitted by exogenous factors or cell cycle checkpoints regulate RNA-mediated gene expression at the ato...
متن کاملStructural basis for RNA-genome recognition during bacteriophage Qβ replication
Upon infection of Escherichia coli by bacteriophage Qβ, the virus-encoded β-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qβ replicase holoenzyme complex, which is responsible for amplifying the Qβ (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and...
متن کاملStructural Basis for Substrate Selection by T7 RNA Polymerase
The mechanism by which nucleotide polymerases select the correct substrate is of fundamental importance to the fidelity of DNA replication and transcription. During the nucleotide addition cycle, pol I DNA polymerases undergo the transition from a catalytically inactive "open" to an active "closed" conformation. All known determinants of substrate selection are associated with the "closed" stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry
سال: 2003
ISSN: 0006-2960,1520-4995
DOI: 10.1021/bi027137h